53

Benzene Migration in an Osmium Cluster: the Formation of Os₃(CO)₇(η^{6} -C₆H₆)(μ_3 : η^1 : η^2 : η^1 -C₂Me₂) from Os₃(CO)₉(μ_3 : η^2 : η^2 : η^2 -C₆H₆). The Crystal Structure of Os₃(CO)₇(η^{6} -C₆H₆)(μ_3 : η^1 : η^2 : η^1 -C₂Me₂)

Dario Braga,^a Fabrizia Grepioni,^a Brian F. G. Johnson,^b Jack Lewis,^b Marcia Martinelli,^b and Mark A. Gallop^c

^a Dipartimento di Chimica 'G. Ciamician,' Universitá degli Studi di Bologna, Via Selmi 2, 40126 Bologna, Italy ^b University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, U.K.

^c Department of Chemistry, University of California, Berkeley, California 94720, U.S.A.

The activated cluster $[Os_3(CO)_7(C_2H_4)(\mu_3:\eta^2:\eta^2:\eta^2:C_6H_6)(MeCN)]$ reacts with alkynes RC_2R' (R = R' = H, Ph or Me; R = H, R' = Ph; R = Me, R' = Et), to produce the new clusters $[Os_3(CO)_7(\eta^6-C_6H_6)(\mu_3:\eta^1:\eta^2:\eta^{1-R}C_2R')]$ in which the benzene is bonded to a single metal atom as shown by a single crystal X-ray structure determination of the C_2Me_2 derivative.

Recent studies¹ have shown that benzene readily forms complexes with a wide range of cluster systems. A remarkable feature of these complexes is the variety of bonding modes adopted by the benzene or its fragments (e.g. C_6H_4). One more recently observed structural type contains a benzene symmetrically bonded to three metal atoms of a triangulometal unit as in, for example, $Os_3(CO)_9(\mu_3:\eta^2:\eta^2:\eta^2:C_6H_6)$ (1) or $Ru_6C(CO)_{11}(\eta^6-C_6H_6)(\mu_3:\eta^2:\eta^2-C_6H_6).^{2a}$ In compounds of this type it is tempting to describe the bonding of the C_6H_6 molecule in terms of localised double bonds and related to the bonding exhibited by C_6H_6 to the Rh^{III} surface.³ Very recently we demonstrated⁴ that on irradiation, cluster (1) undergoes a double C-H activation to produce the benzyne complex $O_{s_3}(H)_2(C_6H_4)(CO)_9$ (2). We have also observed that (1) readily undergoes reaction with Me₃NO/MeCN to C_6H_6 (3) from which a range of derivatives of the type $Os_3(CO)_8L(\mu_3-\eta^2\eta^2-\eta^2-C_6H_6)$ (4a), (L = C₂H₄, R₃P etc.)^{2b} and $Os_3(CO)_7(C_2H_4)(\mu_3-\eta^2-\eta^2-C_6H_6)(MeCN)$ (4b)[†] may be obtained (see Scheme 1). We report that (4b) reacts with alkynes (RR'C₂) to form the new complexes $Os_3(CO)_7(\eta^6-C_6H_6)(\mu_3:\eta^1:\eta^2:\eta^1-RC_2R')$ (R = R' = H, Ph or Me; R = H, R' = Ph; R = Me, R' = Et) (5) in which the benzene is now bonded to a single osmium atom (Scheme 1). This unusual migration is the reverse of that previously observed² and clearly indicates the ease with which the C_6H_6 unit (or its relatives) may modify its co-ordination mode.

[†] Spectroscopic data for $[Os_3(CO)_7(C_2H_4)(\mu_3-\eta^2-\eta^2-\eta^2-C_6H_6)-(MeCN)]$ (**4b**): IR v_{CO}/cm^{-1} (MeCN) 2030m, 1992vs, 1973s, 1927sh; ¹H NMR (CD₃CN/CD₂Cl₂) δ 3.69 (vbr. s, 6H, C₆H₆), 2.15 (br. s, 4H, C₂H₄), co-ordinated MeCN resonance not observed. For $[Os_3(CO)_7-(\mu_3:\eta^1:\eta^2:\eta^{-1}C_2Me_2)(\eta^6-C_6H_6)]$ (**5a**): IR v_{CO}/cm^{-1} (CH₂Cl₂) 2057m, 2019vs, 1969s, br., 1721w; ¹H NMR (CD₂Cl₂) δ 5.94 (s, 6H, C₆H₆), 2.69 (s, 3H, Me), 2.24 (s, 3H, Me); 904.

Scheme 1. Reagents and conditions: i, 1.1 mol equiv. of Me₃NO/CH₂Cl₂ added dropwise to a CH₂Cl/MeCN solution, at -78 °C; ii, C₂H₄ passed in CH₂Cl₂ at room temp.; iii, 1.5 mol equiv. of Me₃NO in CH₂Cl₂ added dropwise to a CH₂Cl₂/MeCN solution, at room temp.; iv, excess of C₂R₂ added at room temp.

Figure 1. Molecular structure of (5a), showing labelling scheme; the C atoms of the CO groups bear the same numbering as the corresponding O atoms. H atoms of the benzene group are omitted for clarity. Relevant bond distances (Å) and angles (°) include: Os(1)–Os(2) 2.832(1), Os(1)–Os(3) 2.708(1), Os(2)–Os(3) 2.791(1), Os(1)–C(9) 2.09(1), Os(3)–C(9) 2.27(1), Os(2)–C(10) 2.14(1), Os(3)–C(10) 2.18(1), C(9)–C(10) 1.44(2), C(8)–C(9)–C(10) 119(1), C(9)–C(10)–C(11) 127(1), mean Os–C(C₆H₆) 2.25(1), mean C(C₆H₆)–C(C₆H₆) 1.39(1), mean Os–C(CO) 1.90(2), mean C–O 1.13(2) Å.

The compound $Os_3(CO)_7(\eta^6-C_6H_6)(\mu_3:\eta^1:\eta^2:\eta^1-C_2Me_2)$ (5a)† is obtained by reacting (4b) with excess of Me_2C_2 in CH_2Cl_2 at room temperature and then separation by TLC on silica. Crystallisation of the compound (5a) from dichloromethane/hexane gave orange rhombic crystals which were subjected to single crystal X-ray analysis.[‡]

The molecular structure of (5a) is shown in Figure 1 together with some relevant structural parameters. Os–Os bond distances within the Os-triangle range from 2.708(1) to 2.832(1) Å [mean 2.777(1) Å] thus being substantially shorter than in (1) and (4a) [2.865(1) and 2.847(1) Å ($L = C_2H_4$), respectively] which bear a μ_3 - η^2 - η^2 - η^2 - η^2 - G_{H_6} ligand. In (5a) the C_6H_6 -ligand is found η^6 -interacting with a single Osatom [Os(2)] while the C_2Me_2 ligand lies above the metal triangle. This latter ligand bonds to the metal atoms *via* two σ -interactions [Os(1)–C(9) and Os(2)–C(10), mean 2.12(1) Å] and one π -interaction [Os(3)–C(9), Os(3)–C(10), mean

 $[\]ddagger Crystal data$ for (5a) C₁₇H₁₂O₇Os₃: M = 899, triclinic, space group P1, a = 8.09(1), b = 8.374(1), c = 15.139(7) Å, $\alpha = 101.67(2)$, $\beta = 92.00(7)$, $\gamma = 106.82(6)^\circ$, U = 956.6 Å³, Z = 2, $D_c = 3.12$ g cm⁻³, F(000) = 796, $\mu(\text{Mo-}K_{\alpha}) = 191.3 \text{ cm}^{-1}$, $2.5 < \theta < 25^{\circ}$, final R value 0.056, $R_{\rm W} = 0.061$ for 2938 out of 3252 independent reflections $[I_{\rm o} >$ $2\theta(I_{o})$] collected by the $\omega/2\theta$ scan method. Absorption correction was applied by azimuthal scan of 12 reflections [$\chi > 80^{\circ}$] (minimum transmission factor 46%) and subsequently by the Walker and Stuart method (correction range 0.89-1.31).⁵ All non-H atoms allowed to vibrate anisotropically. The H atoms of the Me and benzene groups were added in calculated positions [C-H 1.08 Å] and refined 'riding' on their respective C atoms; two isotropic thermal parameters were also refined for the H(Me) and H(Bz) atoms $[0.16 \text{ and } 0.08 \text{ Å}^2]$, respectively]. The structure was solved by direct methods and refined by full-matrix least-squares.⁶ Atomic co-ordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Notice to Authors, Issue No. 1.

2.23(1) Å], the atoms belonging to the Os(1)–Os(2)–MeCCMe system being almost coplanar [dihedral angle between the C(8)–C(9)–C(10)–C(11) and Os(1)–C(9)–C(10)–Os(2) planes 12°]. The C–C–C angles and C–C bond lengths within the C₂Me₂ fragment also agree with an sp² hybridization on the metal co-ordinated C-atoms.

Considering a 6-electron donation from the C_6H_6 fragment, the electron distribution over the three metal centres appears to be uneven: while Os(1) formally receives nine electrons, Os(2) receives eleven electrons, and Os(3) receives ten electrons from the ligands and metal atoms. The $Os-C(C_6H_6)$ and $C(C_6H_6)-C(C_6H_6)$ bond lengths are shorter in their mean values [2.25(1) and 1.39(1) Å, respectively] than the corresponding values in (1) and (3) [2.33(2), 1.44(3); 2.32(2), 1.46(3) Å, respectively] indicating that the C_6H_6 fragment establishes a substantially different bonding interaction when co-ordinated to one or three metal centres. The occurrence of rotational disorder of the C₆H₆ ligand which could be accommodated in large mean square vibrational motion of the ligand around its six-fold axis, may be taken as indicative that the fragment lies in a shallow potential energy well and may well show dynamic behaviour in the solid state as well as in solution. A more detailed discussion of this aspect will/be given in the full report.

We thank the CNPq (Brazil) for a Ph.D. scholarship (M. M.) and Ministero Pubblica Istruzione (Italy) for financial support.

Received, 10th March 1989; Com. 9/01066A

References

- 1 See for example: S. A. R. Knox, B. R. Lloyd, A. G. Orpen, J. M. Vinas, and M. Weber, *J. Chem. Soc., Chem. Commun.*, 1987, 1498 and references cited therein.
- 2 (a) M. P. Gomez-Sal, B. F. G. Johnson, J. Lewis, P. R. Raithby, and A. H. Wright, J. Chem. Soc., Chem. Commun., 1985, 1682; (b) M. A. Gallop, B. F. G. Johnson, J. Lewis, and P. R. Raithby, J. Chem. Soc., Chem. Commun., 1987, 1809.
- 3 R. F. Lin, G. S. Blackman, M. A. Van Hove, and G. A. Somorjai, Acta Crystallogr., Sect. B, 1987, 43, 368; M. A. Van Howe, R. F. Lin, and G. A. Somorjai, J. Am. Chem. Soc., 1986, 108, 2532; F. P. Netzer, H. H. Graen, H. Kuhlenbeck, and M. Neumann, Chem. Phys. Lett., 1987, 133, 49; J. U. Mack, E. Bertl, and F. P. Netzer, Surf. Sci., 1985, 159, 265.
- 4 M. A. Gallop, B. F. G. Johnson, J. Lewis, A. McCamley, and R. N. Perutz, J. Chem. Soc., Chem. Commun., 1988, 1071.
- 5 N. Walker and D. Stuart, Acta Crystallogr., Sect. A, 1983, 39, 158.
- 6 G. M. Sheldrick, SHELX76 system of computer programs, University of Cambridge, 1976.